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SUMMARY

With the aim of constructing a comprehensive design optimization procedure of axial �ow hydraulic
turbine, an improved quasi-three-dimensional inverse method has been proposed from the viewpoint of
system and a set of rotational �ow governing equations as well as a blade geometry design equation
has been derived. The computation domain is �rstly taken from the inlet of guide vane to the far outlet
of runner blade in the inverse method and �ows in di�erent regions are solved simultaneously. So the
in�uence of wicket gate parameters on the runner blade design can be considered and the di�culty
to de�ne the �ow condition at the runner blade inlet is surmounted. As a pre-computation of initial
blade design on S2m surface is newly adopted, the iteration of S1 and S2m surfaces has been reduced
greatly and the convergence of inverse computation has been improved. The present model has been
applied to the inverse computation of a Kaplan turbine runner. Experimental results and the direct �ow
analysis have proved the validation of inverse computation. Numerical investigations show that a proper
enlargement of guide vane distribution diameter is advantageous to improve the performance of axial
hydraulic turbine runner. Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: �uid machinery; hydraulic turbine; inverse problem; blade geometry design; computa-
tional �uid dynamics

1. INTRODUCTION

This paper is related to the inverse design optimization of axial �ow hydraulic turbine run-
ner. As the development of computational �uid dynamics, it becomes possible to analyse the
complex internal �ow in hydraulic machinery by solving the Navier–Stokes equations or [1]
the three-dimensional (3D) Euler equations [2]. Compared with the direct problem of �ow
analysis, the inverse problem of blade geometry design is much more di�cult. Nearly all
inverse models are basically based on the inviscid assumption and some very useful simpli-
�ed design methods have been developed with e�ort [3]. Concerning the inverse design of
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turbo-machinery, especially hydraulic machinery runner blades, a survey of published litera-
ture indicates that only a few real 3D inverse models, such as the Fourier series expansion
singularity method [4, 5], the pseudo-stream function method [6] and the inverse time march-
ing method [7] have been reported. The pseudo-stream function method and the inverse time
marching method are really an alteration of direct calculation and blade geometry modi�cation.
For the di�culty of de�ning a good relation between design speci�cation and blade geom-
etry modi�cation, these two methods are very time consuming and further e�ort is needed
to put them into practice applications. The Fourier expansion singularity method is originally
developed for potential �ow and then developed for rotational �ow by Zangeneh et al. [8].
Although it can be applied to the inverse computation of axial �ow hydraulic turbine run-
ner [9], much e�ort is needed in order to obtain blade geometry of convergence near the
tip where the swirl velocity has a great gradient in the radial direction due to the geometry
of �ow passage. Thus, much computation time will be taken when a Fourier expansion of
many terms is adopted to improve the accuracy of inverse computation. Besides the above
methods, some useful inverse methods are developed based on the general theory of two-type
relative stream surfaces presented by Wu [10]. Similar to the computations of the Navier–
Stokes equations and the Euler equations, a real three-dimensional iteration computation of S1
(blade-to-blade) and S2 (hub-to-shroud) surfaces is much time consuming. Therefore, a rep-
resentative mean S2 surface (S2m) is usually introduced to reduce the iteration work. This is
the so-called quasi-three-dimensional (Q3D) method. Compared to the fully three-dimensional
computations, the Q3D inverse computation has a feature of quick convergence. Although
the circumferential twist of S1 surface is neglected, the Q3D inverse computation can provide
a su�cient accuracy for engineering practice. Furthermore, with an accurate inverse model
of quick convergence, it will become possible to �nd an optimum design plan by design
optimization of comprehensive performance.
In the conventional Q3D inverse methods, the hydraulic turbine runner is usually treated

as an isolated �ow passing part. It is essential to de�ne the �ow boundary conditions at the
upstream in front of the runner blade inlet and the downstream behind the blade outlet. These
boundary conditions are usually de�ned empirically according to certain experimental data. In
this way, the in�uence of wicket gate parameters on the inverse computation of runner blades
cannot be taken into account [11]. In addition, it is di�cult to �nd a universal runner blade
inlet and outlet boundary conditions suitable for the �ow computation of hydraulic turbine due
to the limitation of the experiment. Especially, for the inverse problem, it is nearly impossible
to de�ne the �ow conditions at inlet and outlet of runner blade according to experimental
results because the blade shape is an unknown parameter to design.
On the above considerations, an improved Q3D method based on S1 stream surfaces is

proposed for axial hydraulic turbine runner design. First, in order to surmount the di�culty
of de�ning �ow conditions at blade inlet and outlet, the computation domain of inverse
computation is taken from the far inlet of guide vane to the far outlet of runner blade. The
�ow in the range of guide vane and the �ow in the bladeless region from the guide vane
trailing edge to the blade inlet as well as the �ow in the range of runner blade are computed
simultaneously as a whole. So the in�uence of wicket gate parameters on the runner blade
design can be taken into account through iteration computation. The di�culty of de�ning
�ow condition at blade inlet is surmounted. The second, a pre-computation of initial blade
geometry on the mean S2m surface is newly adopted in order to improve the convergence
of inverse computation, and then the initial blade geometry is modi�ed on S1 surfaces. As
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the initial S1 stream surfaces given through the pre-computation of initial blades on the S2m
surface are much close to the �nal ones, the iteration work of S1 and S2m surfaces is reduced
and the convergence of inverse computation is much improved.

2. MATHEMATICAL MODEL

The real water �ow in hydraulic turbines is viscous and weakly compressible. Cavitation will
commence when the local static pressure is less than the vapour pressure of the water. Cavita-
tion �ow is highly compressible, and cavitations should be limited to a small area in a runner
well designed even when they take place. Furthermore, avoiding cavitation should be one of
the goals of runner blades design. Thus, the compressibility caused by cavitations is usually
neglected in the inverse computation of hydraulic turbines. Instead, some e�orts such as con-
trolling of minimum local pressures are usually made to avoid cavitations. Concerning the
�uid viscosity, on the one hand, experimental researches show that the e�ect of viscosity in
hydraulic machinery is limited within a thin layer near the solid boundaries [1]. On the other
hand, it is di�cult to de�ne a relation between design speci�cation and blade geometry modi-
�cation for the computation of Navier–Stokes equations [12]. Thus, the assumption of inviscid
�uid is usually adopted in the inverse computation of hydraulic runner blade and the viscous
�ow separation and so on are controlled by de�ning certain constraints to the inverse design.
With the aim of constructing a practical comprehensive performance optimization procedure

of hydraulic turbine [13], the present inverse model is also developed under the assumption
of inviscid incompressible �ow in order to obtain a quick convergence. The viscous e�ect
is estimated through viscous �ow analysis, and the �ow separation is controlled by adjusting
the values of design parameters through optimization procedure. The problem of cavitations is
considered by de�ning a constraint that the local minimum static pressure is greater than the
vapour pressure of water for the inversed design and �nding a minimum value of cavitation
coe�cient through optimization of blade loading distribution.
In the present theory, the 3D internal �ow of hydraulic turbine is calculated by iteration

computations of the mean S2 stream surface and a series of S1 stream surfaces is based
on the theory of two-type relative stream surfaces, and the governing equations of inverse
computation is derived as follows.

2.1. Circumferentially averaged mean �ow computation

Figure 1 shows the schematic con�guration of axial �ow hydraulic turbine to be researched.
In a right-handed cylindrical polar co-ordinate system de�ned by (z; r; �) which is rotating
together with the impeller, the continuity and momentum equation of the three-dimensional
rotational steady �ow in hydraulic turbines is known to be as follows:

∇ ·W=0 (1)

W× (∇×V) =∇Er (2)

in which

Er =
(
V 2

2
+

p
�
+ gz

)
−!V�r
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Figure 1. Scheme of Kaplan turbine and the meridional �ow passage.

where Er denotes the relative total enthalpy per unit mass. W̃ and Ṽ denotes the relative
velocity and absolute velocity, respectively. g denotes the gravity and z the axial co-ordinate.
p and � represent the pressure and the density of working �uid, respectively. In order to derive
the �ow governing equation on the mean stream surface S2m, we de�ne a circumferentially
averaging operation as follows:

�f =
1

�p − �s

∫ �p

�s
f(z; r; �) d� (3)

where f̃ denotes an arbitrary physical quantity. �p and �s denote the angular co-ordinate of the
pressure surface and the suction surface of two adjacent blades. Taking the circumferentially
averaging operation to Equations (1) and (2), we obtain the following governing equations
of the averaging mean �ow:

∇ · [(�p − �s)W] = 0 (4)

W× (∇×V) +R=−Fb +∇Er (5)

in which

Fb =W× 1
(�s − �p)H�n�

�ps(n× W̃); R= W̃× (∇× Ṽ)

�ps(n× W̃) = (n× W̃)|�=�p − (n× W̃)|�=�s ; W̃=W −W; Ṽ=V −V
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where Fb represents the action of blade to the mean �ow and its direction lays in the direction
of blade mean surface, that is Fb× n=0. R represents the e�ect of �ow periodicity in the
circumferential direction. It is a high order in�nitesimal term caused by the circumferential
�ow variation due to the blade thickness and the �nite number of blades [14] and is neglected
in this computation. The subscript � denotes the component in the circumferential direction.
H denotes the Lame coe�cients of co-ordinate scale factor, and they are given as Hz=Hr = 1
and H�= r in the cylindrical co-ordinate system (z; r; �). The vector n denotes the normal unit
of the circumferentially averaged mean �ow surface S2m that is thought to be parallel to the
blade mean surface in the blade region. Thus, the normal unit vector can be given as follows:

n=
∇S
|∇S| (6)

where S denotes the covert function of blade mean surfaces. In the (z; r; �) co-ordinate system,
the blade mean surfaces can be expressed as follows:

S(z; r; �) = �− ’(z; r)

= k
2�
Nb

(k=0;±1;±2; : : :) (7)

where ’(z; r) is the angular co-ordinate of blade mean surfaces and Nb is the number of
runner blades. Taking into account Equation (6), we obtain the following expression:

n=
1√

1 + (r@’=@r)2 + (r@’=@z)2

(
e� − r@’

@r
er − r@’

@z
ez

)
(8)

where e denotes a unit vector and subscripts r, �, z denote the direction of the corresponding
co-ordinate, respectively. Multiplied by the unit normal of blade mean surface, Equation (5)
can be written as follows:

n× [W× (∇×V)]= n×∇Er (9)

Arranging the above expression, we obtain the following equation of partial di�erence:

@Wz

@r
− @Wr

@z
=

@’
@r

@ �V�r
@z

− @’
@z

@ �V�r
@r

+
1

W
2

[
@Er
@r

(
Wr +W�

r@’
@z

)
− @Er

@z

(
Wr +W�

r@’
@r

)]
(10)

where W
2
=W

2
r +W

2
� +W

2
z , �V�r is called the mean velocity torque (or mean swirl velocity),

which is directly related to the mean blade bound circulation �=2� �V�r.
Concerning the conservation of mass, we de�ne the following stream function from

Equation (4).

@�
@r
= rBfWz;

@�
@z
= − rBfWr (11)
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where Bf denotes the blade blockage coe�cient that is given as Bf =Nb(�p − �s)=2�. Taking
the stream function into Equation (10), we derive the following equation of stream function
governing the circumferentially averaged mean �ow:

@
@r

(
1
rBf

@�
@r

)
+

@
@z

(
1
rBf

@�
@z

)
=

@’
@r

@ �V�r
@z

− @’
@z

@ �V�r
@r

+
1

W
2

[
@Er
@r

(
Wr +W�

r@’
@z

)
− @Er

@z

(
Wr +W�

r@’
@r

)]
(12)

This is a 2D elliptic partial di�erence equation. It should be solved subjected to boundary
conditions at tip and hub end walls as well as the upstream and the downstream. At the
upstream near the blade inlet, the in�ow is in�uenced by the blade geometry to be designed.
So, it is very di�cult to de�ne the �ow condition near the blade inlet [15]. On the other
hand, the �ow at the far inlet of wicket gate is approximately uniform. It is convenient to give
the �ow condition there. In the view of systems, the �ow in the region of guide vane and
the �ow through the runner are interrelated. It is more reasonable to deal with the �ow from
the inlet of guide vane to the outlet of runner blade. On this consideration, the computation
domain of circumferentially averaged mean �ow is �rstly taken from the far inlet of guide
vane to the fare outlet of runner blade in the present inverse computation. In this way, the
di�culty to de�ne �ow condition at the upstream near the blade can be surmounted. Then,
�ow governing equations for the region of guide vane as well as bladeless regions in front
and behind the runner are required to be added.
For the �ow in the range of wicket gate, !=0. According to the conservation of energy,

we know that the absolute enthalpy per unit mass Ei=V 2=2 + p=� + gz should be constant
anywhere. Then the �ow governing equation in the range of guide vane can be derived as
follows from Equation (2) in the same way as above:

@
@r

(
1
rBf

@�
@r

)
+

@
@z

(
1
rBf

@�
@z

)
=

@’
@r

@ �V�r
@z

− @’
@z

@ �V�r
@r

(13)

in which ’ denotes the angular co-ordinate of the mean surface of guide vane and Bf its
blockage coe�cient.
In bladeless non-rotating regions, the equation of motion can be written as follows under

the assumption of inviscid incompressible steady �ow:

V× (∇×V)=0 (14)

Similarly, the following �ow governing equation of stream function can be derived from
above:

@
@r

(
1
r
@�
@r

)
+

@
@z

(
1
r
@�
@z

)
=

�V�r
�V
2

m r2

(
�Vr
@ �V�r
@z

− �Vz
@ �V�r
@r

)
(15)

where �V
2

m = �V
2
r + �V

2
z .

As the right-hand side of Equation (12) includes the unknown parameter ’ of blade geom-
etry to be designed, the above set of equations should be solved simultaneously by iteration
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Figure 2. Curvilinear co-ordinates on the S1 surface.

method. For the computation domain shown in Figure 1, boundary conditions are given as
follows: (a) At end wall of hub streamline �=0. (b) At end wall of shroud streamline
�=Q=2�, where Q denotes the volumetric �ow rate. (c) At the upstream, @�=@n=0. (d) At
the downstream, �=�o(r), where �o(r) is a distribution function a�ected by the geometry
of �ow path and the shape of blade [11; 16]. For the di�culty to de�ne directly, the distribu-
tion function at runner exit is modi�ed iteratively to keep a natural exit �ow along S1 stream
surfaces.

2.2. Governing equation on S1 stream surfaces

With regard to the actual practice of hydraulic machinery, S1 stream surfaces relative to runner
blades are twisted curved surfaces. For its twist in the circumferential direction is very small,
S1 stream surfaces are usually assumed to be symmetric in the engineering practice [17].
In order to derive the �ow governing equation on S1 surface, an orthogonal curvilinear

co-ordinate system (q1 =m; q2; q3 = �) shown in Figure 2 is adopted on S1 stream surface,
in which q1 is in the direction of meridional streamline and q3 = r0� in the circumferential
direction. q2 = q1× q3 is the out normal direction of S1 surface. r0 denotes the radius of the
co-ordinate origin. Then the Lame coe�cient of the co-ordinates can be given as, H1 = 1,
H2 = h(q1) H3 = r=r0, where h(q1) denotes the dimensionless thickness of S1 stream layer nor-
malized with the thickness at the co-ordinate origin. Under the assumption of circumferential
uniform in�ow, we know that the vorticity of absolute motion on the S1 surface equals zero.
That is, rot2V=0, which can be written as follows:

1
H1H3

(
@(H1W1)

@q3
− @(H3W3)

@q1

)
− 2! @r

H1@q1
= 0 (16)

Arranging the above expression, we obtain the following equation:

@Wm

@�
− @(rW�)

@m
=2!r

@r
@m

(17)
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Figure 3. Expansion of S1 stream surface.

As the co-ordinate q2 is normal to the S1 stream surface, its velocity component W2 should
be zero, the continuity of mass reduces to the following form:

@
@q1

(H2H3W1) +
@

@q3
(H1H2W3)=0 (18)

This equation can be written as follows:

@
@m
(hrWm) +

@
@�
(hW�)=0 (19)

Based on the above continuity equation, a stream function on the S1 stream surface can be
de�ned as

@�
@�
= hrWm;

@�
@m

= − hW� (20)

Then, a general stream function equation governing the �ow on S1 stream surface is derived
from Equation (17)

@
@m

(
r
h

@�
@m

)
+

@
@�

(
1
hr

@�
@�

)
=2!r

@r
@m

(21)

This equation is the 2D one concerning m and �. Thus, it is solved in the expand surface
shown in Figure 3.
In solving the above equation, parameters h(m) and @r=@m should be de�ned through �ow

computation of the S2m stream surface. The boundary conditions for the computation domain
shown in Figure 3 are given as follows:

(a) At the upstream and the downstream, @�=@n|ah= hW�|ah, @�=@n|de= hW�|de.
(b) On blade suction and pressure surfaces, �|bc = 0, �|fg=dq, where dq is the partial �ow

rate passing through two adjacent blades on the stream surface.
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(c) Periodic boundary conditions, �|ef=�|cd + dq,  |gh=  |ab + dq.
(d) The Kutta–Joukwski condition, Wf=Wc

Concerning the Kutta–Joukwski boundary condition, the �ow on S1 surfaces is computed
iteratively.

2.3. Equation of blade geometry design

Once the �ow �eld is determined, it is possible to calculate the shape of the blade by imposing
the inviscid slip boundary condition that the blade should be aligned with the local velocity
vector. The condition can be expressed as

Wb · ∇S=0 (22)

where Wb denotes the velocity at the blade mean surface and Wb = (Wp+Ws)=2, in which Wp

and Ws denote relative velocity vectors on pressure and suction surfaces of blade, respectively.
According to Equation (6), we obtain the following equation:

Wb; r
@’
@r
+Wb; z

@’
@z
=
1
r2
( �V�r −!r2) (23)

Averaging the above equation circumferentially and arranging the expression, we obtain the
following equation of blade mean surface computation:

Wmr2
d’
dm

= �V�r −!r2 (24)

The above �rst-order di�erential equation can be easily solved by iteration. The integration, as
in the case of other initial value problems, requires an initial condition. The initial condition,
which is called stacking condition of blade design, is implemented as an input by giving the
following relation here:

’(z= zst ; r; �)=’0 (25)

where zst and ’0 denote the given co-ordinates of stacking axis. With the above blade stacking
condition, Equation (24) is easily applied to design the shape of blade mean surface. For
the computation of S2m stream surface treats the three-dimensional �ow as a circumferential
uniform one, which is only suitable for a runner with the many thin blade, the blade designed
on S2m surface cannot guarantee the variation of swirl velocity. Especially for the axial �ow
hydraulic turbine runner with a few blades, it is necessary to modify the blade geometry on
S1 surfaces considering the circumferential �ow variation. Thus, the following relax iteration
formula of the mean blade surface based on S2m surfaces is derived from Equation (24):

’(n+1) =’(n) + �
∫
( �V�r)g − ( �V�r)(n)

Wmr2
dm (26)

where � denotes a relaxation coe�cient. The superscript n+1 denotes the computation result of
a new step and n the one of the previous step. ( �V�r)g is the given velocity torque distribution of
design speci�cation. After getting a new blade mean surface, new blade pressure and suction
surfaces are calculated according to the blade thickness in the circumferential direction in
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the present computation. The circumferential thickness of blade can be computed using the
following formula [18]:

t�(z; r)= tn(z; r)

[
1 + r2

(
@’
@r

)2
+ r2

(
@’
@z

)2]1=2
(27)

where tn(z; r) denotes the normal thickness distribution which is given as a design speci�cation.
Summarizing the above statement, we know that the �rst step of the present Q3D inverse

model is to design an initial blade through the inverse computation on the mean S2m surface
until convergence. Then, the next is to modify the blade geometry through iteration compu-
tations of the inverse problem on S1 stream surfaces and the direct problem on S2m stream
surface. Compared to traditional Q3D methods of axial hydraulic turbine runner blade de-
sign where the blade geometry is directly calculated on S1 surfaces given by meridional �ow
computation, the iteration numbers of S1 and S2m surfaces in the present improved method
has been reduced greatly because a reasonable initial blade is calculated on S2m surface and
initial S1 stream surfaces close to the �nal ones are de�ned considering the e�ect of initial
blade geometry on S2m surface.

3. NUMERICAL RESULTS

3.1. Experimental validation

As a numerical example, the present inverse model is applied to design a Kaplan turbine
runner using a �nite element method. Basic design parameters of the turbine model are given
as: the speci�c speed ns = 440 mkW, the rotational speed of designing n10 = 115 min

−1, the
volumetric �ow rate Q10 = 1:250m3=min, the diameter of the runner to be designed D1 = 1:0m,
the working head H =1:0 m, the number of blades Nb = 6, the diameter of pitch circle for
guide vane distribution D0 = 1:16Dl, the height of guide vane (span length) B0 = 0:375Dl.
The guide vane is chosen to be the standard symmetric one. The �ow passage and compu-

tation domain is given as shown in Figure 1. In order to prove the validation of dealing with
�ows in di�erent regions by the simultaneous combination computation method, the velocity
distribution in the bladeless region from the guide vane trailing edge to the runner blade
leading edge are investigated numerically and experimentally. Figure 4 shows the velocity
distributions on Sections 1 − 1 and 2 − 2 given in Figure 1, where the solid line and the
dashed line represent, respectively, the computational and the experimental results. The �gure
demonstrates that computational results coincide with experimental ones well. Thereby, the
validation of the present simultaneous combination computation of di�erent �ow regions has
been proved. The method of de�ning the �ow boundary condition at the runner blade inlet
by combination computation is reliable.

3.2. Inverse computation

The mean velocity torque distribution, �V�r, is an important design speci�cation that determines
the runner blade geometry and thus have a great in�uence on the performance of the designed
runner. For the hydraulic turbine runner, the value of velocity torque at the runner blade
leading edge is determined by the in�ow of upstream from guide vanes. The variation of
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Figure 4. Comparison of computational results with experimental ones.

Figure 5. Velocity torque distribution along streamlines.

velocity torque from the blade leading edge to the trailing edge is determined by the blade
duty of the designed runner obeying the conservation of energy. In order to satisfy the Kutta–
Joukowsky condition, the derivation of velocity torque in the streamline direction should be
set to zero at the blade leading edge. Considering the above points, we de�ne the velocity
torque distribution as a fourth polynomial in the stream direction from the blade leading
edge to the trailing edge. Figure 5 shows the results of actually speci�ed velocity torque
distribution along streamlines from the blade leading edge to the trailing edge by circles.
The blade normal thickness distribution along streamline is given as that of RAF-6 hydrofoil.
Under the meridional geometry shown in Figure 1, runner blades have been designed using
the computer code of the present inverse model. Figure 6 shows the geometry of designed
blade on cylindrical sections uniformly taken from the hub to the tip. The �gure demonstrates
that the designed blade is smoothing and reasonable. Figure 7 shows the contour of velocity
torque distribution in the blade region. From the �gure we understand that the gradient of
velocity torque in the radial direction is very large near the tip. So the �ow through Kaplan
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Figure 6. Designed blade geometry on cylindrical sections.

Figure 7. Contours of velocity torque in the blade region.

Figure 8. Convergence history of blade geometry design on S1 surface.

runner is a rotational �ow with large vorticity. This is the characteristic of the �ow in axial
�ow hydraulic turbine di�erent from other ones. Concerning the convergence of the present
model, the iteration numbers between S2m and S1 surfaces is about 3–5, which is only about
1=3 of the case without the pre-computation of initial blade design on the S2m surface. The
computation time on a personal computer of 200MHz is only about 5 min. Figure 8 shows the
convergence history of blade geometry design on S1 surfaces in which a good convergence
property is demonstrated.
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Figure 9. Relative velocity distribution on blade surfaces.

In the present inverse model, �rst, the in�uence of blade geometry on the mean �ow is
considered in the process of designing an initial blade on the S2m surface. So the initial S1
stream surfaces de�ned through the computation of S2m surface are much more close to the
�nal ones and then the iteration of S1 surfaces and the S2m surface is reduced greatly. Second,
the circumferential �ow variation is taken into account by modifying the blade geometry on S1
stream surfaces. So the designed runner meets the output requirement quite well. The present
Q3D inverse model is a simple and but an e�ective inverse design method �t for engineering
practice.
In order to verify the validity of the inverse computation, the �ow through the designed

runner has been investigated by direct �ow analysis. Figure 9 shows relative velocity dis-
tributions on the suction and pressure surfaces of hub and tip blade by dots and circles,
respectively, in which s denotes the streamline co-ordinate on the mean blade surface. Ac-
cording to the result, we know that the designed runner blade geometry is reasonable. The
velocity torque distributions along streamlines obtained by �ow analysis of designed runner
blades are shown in Figure 5 with triangles. The �gure indicates that the velocity torque
distribution of the designed runner coincides well with the design speci�cation. This means
that the designed runner blade meets the design requirement of output well.

3.3. In�uence of wicket gate parameters on blade design

The height B0 of guide vane and the diameter D0 of guide vane distribution are the main
parameters of wicket gates. According to the above inverse computation, these two parameters
have an in�uence on the inverse design of runner blade. Their e�ects have been investigated
through inverse computations under di�erent given values of these parameters. When B0 equals
0:425D1, 0:4D1 and 0:375D1, the velocity torque distribution in the span direction along the
trailing edge of guide vane is shown in Figure 10 by circles, quadrilaterals and triangles,
respectively. The distributions are nearly the same and so the value of B0 has little in�uence
on runner blade design. But when D0 equals 1:25D1, 1:2D1 and 1:16D1, the velocity torque
distribution along guide vane trailing edge becomes that shown in Figure 11 by circles,
quadrilaterals and triangles, respectively. Thus, the gradient of velocity torque in the radial
direction in the blade region is quite di�erent. As the gradient of velocity torque in the radial
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Figure 10. Velocity torque distribution along the trailing edge of guide vane
(under di�erent values of B0).

Figure 11. Velocity torque distribution along the trailing edge of guide vane
(under di�erent values of D0).

direction has a great in�uence on the �ow near the tip, a proper enlargement of guide vane
distribution diameter D0 is advantageous to improve runner blade twist. It is also bene�cial
to eliminate blade trailing vortex sheets and thereby to reduce the exit energy loss of the
designed runner.

4. CONCLUSIONS

An improved Q3D inverse method has been proposed for hydraulic turbine blade design from
the viewpoint of �ow system. The computation domain is �rstly taken from the far inlet of
guide vane to the far outlet of runner blade in the inverse computation and the �ow in di�erent
regions is solved simultaneously as a whole. So the in�uence of guide vane on runner blade
design can be considered and the di�culty of de�ning the �ow condition at the blade inlet
is surmounted.
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A set of rotational �ow governing equations and a blade geometry design equation has
been derived. As a pre-computation of initial blade design based on the S2m stream surface
is newly adopted, the iteration of S1 and S2m stream surface has been reduced greatly and
the convergence of inverse computation has been improved. With this inverse model, it is
convenient to control the performance of designed runner by adjusting the velocity torque
distribution of design speci�cation.
Experimental results and the direct �ow analysis have veri�ed the validity of the improved

inverse model. Numerical investigation shows that a proper enlargement of guide vane distri-
bution diameter is advantageous to improve the performance of axial �ow hydraulic turbine
runner to be designed. For its special features, the inverse method is easy to be applied into
the comprehensive performance design optimization of axial hydraulic turbine runner.
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